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A method of constructing Green’s functions and matrices of mixed boundary va- 
lue problems for regions bounded by coordinate lines in a rectangular Cartesian 

andpolarcoordinate systems (band, half-plane, rectangle, circle. ring, and 
circle and ring sectors) is presented. Several closed representations of such 
functions and matrices are obtained for Laplace equations and Lame’s system 
for the plane problem of the theory of elasticity. 

1. Let US determined the solution U = U (a, y) of the plane problem of the th- 
eory of elasticity defined by displacements 

L (a2 / dx2, aa / dy2, h, p) U (x, y) = F (x, y) ( 1.1) 

B, (a / ax, 8 / dy) U (x, 0) = B, (a / ax, d / dy) U (x, b) = 0 

B3 (a i dx, 3 / dy) U (0, y) = B, (a / ax, d / dy) U (a, y) = 0 

in the rectangle f2 (0 < x < U, 0 < y < b). In these equations U (cc, y) and 

F (27 Y) are vectors of displacements of points of rectangle $2 and of volume forces, 

respectively; h and p are Lam& constants that define the elastic properties of the 

material filling the !2 -space. The elements of the matrix operator L = (Lii) *;s 
are determined by formulas 

Lll=(~+k4a2/ax2+d, L,2=-L21=(h+p)a2/ax ay 
I,, = (A + p)av ag + A 

Operators Bi (i = 1, . . . . 4) define the conditions of interaction of the consider- 

ed rectangle with surrounding medium. 
We assume that the solution of problem (1.1) and vector F (X, Y> can be repre- 

sented by the expansions 

Note that such representation must ensure the fulfilment of the first two boundary 
conditions of problem (1. l), which, for instance, occurs in the case, which is of pra- 

ctical interest, of the stress-strain state symmetry with respect to sides y = 0 and 
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y=b of the Q -rectangle when 

( 1.3) 

In that case we obtain from (1.1) and (1.2) the system of ordinary differential eq- 
uations 

L, (a2 / dz2, h, p ) U, (5) = F, (x) (n - 0, 1, 2, . ..) (1.4) 

with boundary conditions 

Ban (a / az) U, (0) = B,, (a / as) U, (a) = 0 (1.5) 

Elements L{ of matrix L, are determined by formulas 

J% = (A + +.)a2 / a2-+, L12n = - Lain = (h+ pi va /ax 
Lg8n = p a2 18x2 - (n + 2y)v= 

Vectors 

represent the fundamental systf;m of solutions of the homogeneous system that corres- 
ponds to (1.4) for n = 1, 2, 3, . . . (the case of IZ = 0 , although trivial, must be 
considered separately). 

Using the procedure of the Lagrange method of varying independent variables, we 
obtain the general solution of system ( 1.4) of the form 

U,(s) = AWN, E)Li&W- K&)D, 
(1.7) 

0 

where the elements Sir (2, E) of matrix. s, (5, E) are determined by formulas 

Slln (X, E) = U (x - E) - b (x - Q, S12n (5, t) = - mc (x - E) 

&I~ (x7 8 = c (x - 8, S22n (2, E) = m [a (x - E) + b (x - E)1 

a (u) = 1/2’v-1 (A + 3~) sh vu, b (u) = V2 (h + p) u ch vu 

c (u) = 1/2 (h -I- p) u shw, m = p (A + 2p)-l 

and P, (x) = (U,j (<)) is a 2 x 4 matrix whose columns are represented by 
vectors (1.6). 

The column matrix of arbitrary constants D, must satisfy formula (1.7) and boun- 
dary conditions (1.5), and is determined by the integral 
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which after substitution into (1.7) yields 

u,(~)=Sg~(~,5)FnOd5 (n=L&&...) 
0 

(1.8) 

The kernel 

s, (5, E) + P,(x) w,(g) for 2 > E 
P,(s) W,(E) for x<E 

of integral (1.8) is the Green’s matrix of the boundary value problem (1.4), (1.5). 
As already mentioned, go (Z, E) can also be obtained by the described method using 
the fundamental system of solutions for n = 0. 

Applying now the Fourier-Euler transformation formula to F, (5) , from (1.8) and 
the first of formulas (1.2) we obtain 

U(x, y) =q+g Qn (Y) gn CG 8 Qn (r)l F G r) &h ( 1.9) 

UO TIE0 

1 for n = 0 
E, - 1 2 for n > 0 

Owing to the uniqueness of solution of problem (1.1) and the known corollary (see, 
e.g., ,[l]) from the second Green’s formula the kernel of integral ( 1.9) 

(1.10) 

is the sought Green’s matrix of this problem. 
In some cases it is possible to summate expressions of the type (1.10). Thus, for 

example, by formulating problem (1.1) in the half-band (-w<s~0,0~y 
< b) , defining matrix 23, as 

(1.11) 

and stipulating boundedness of vector U (x, y) when 5 -+ - 00, the components 

gi jn (5, E) of the kernel of integral (1.8) for x < E are determined by formulas 

&In (5, E> = P (x - E) - 4 (x - E) - P (x - 5) + q (J: + E) 

hn (z, E) == m [P (x - E) + p (x + 31, &In (x - E) = 

P (x + E) - P (x - E) 

g,,” (5, E) = - m [P (z - E) + q (x - 8 + p (x + E) + 

4 (z + 81 
p (u) = V4 (h + p) ueyu, q (u) = (4~)~~ (h + 3~) evu 
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When n=O and x<e wehave 

gll” = mp%, g12O = g2,” = g,,” = 0 
Carrying out the summation in (1.10) and taking into account the known relation- 

Ship 66 

~tncos7&y=(1-tcosy)(l-2tcosy+t~)-’ 
*=I (1.12) 

00 

c tn n-l cos ny = - -+l(1-2tcosy+t~) 
n=j, 
ta<1,0<y<2n 

we obtain the expression for the element G,, (2, Y; E, q) of the sought Green’s matrix 
in explicit form 

GII(X, Y; %, r) = $mpRe5-_&+3p)bIn E(z+f) E(z+5 + 
,!?(z- 5) E(:-2) 

$(h+tL){Re(z-E)[Q(z-5)+Q(z-5)1 - 

Re(z+5)[Q(z+5)+Q(z+~l}, E(u)= II -o(u)I, 
Q (u) = P(u) E+(u) 

w (u) = exp b~b-~u!, P (u) = Re [I - o (u)J 

z=x+iy, c=E+iq 

and for other elements of Green’s matrix we have 

6, (x7 Y; E, rl) = % II (A + CL) @ + 214- {Re (2 - 5) [T (z _- 5) + 
T (z - 5)J + Re (2 + 5) [T (z + 5) + 2’ (z + 5)l) 

G21 (x, Y; %, rl) = Ye (A + CL) {Re (2 -5) IT (z - 5) - T (z -i)l + 
Be (2 + 5) IT (z + 5) - T (z + 81> 

C.22(2, y;5,rl)=~~(h+3p)mblnE(Z+5)E(;--5) - 
E (z - j) E (z + “;) 

$(~+~)~{~e(z--6)1Q(z--5)-QQz-~)l- 

Re (2 + 5) IQ (2 + 5) - Q (z + c)lJ 
T (u) = 5’ (u) Em2 (u), S (u) = Im o (u) 

The derived construction satisfies all properties that define Green’s matrix. 

2. We present below some of the results of application of the described method 
for deriving Green’s functions of the Laplace operator for various boundary value and 

mixed problems. Thus, for instance, in the case of the Dirichlet problem for the half- 
band (X > 0, 0 < y < b) the Green’s function is expressed by the expansion 
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g (x, Y; E, q) = 2-l jj g,(x, E) sin vy sin vq, v = nzb-1 

gn (t, E) = ‘l,y-l km (-y (x + E)) - exp (V (x - E))J, x 6 g 

whose summation with the notation introduced in Sectn. 1 taken into account yields 

(2.1) 

Formula (2.1) coincides with that obtained in [Z] using a different representation of 

Green’s function for the half-band. 
In the case of mixed problem 

by analogy to the above for the half-band we have 

When the half-bands are considered with the condition 

(6% / 8x + flu),=0 = 0, u lu=O; b = 0 

we obtain 

E (z - i;) E (s + 5) 

(2.2) 

(2.3) 

exp [ - v (z + E)] sin vy sin vq, v = nn;b-l 

from which in the particular case of b = 0 we obtain formula (2.2). 
Following the procedure described in Sect. 1 for the Dirichlet problem in the rec- 

tangle (0 Q 2 Q a, 0 Q y < b)for the Green’s function we obtain the following ex- 

pression 

E (z - E) E (z + i) 
E‘(--L.)E(z$_5) - 

(2.4) 

‘x) 

20-l ’ 
ILL 

sh vx sh -$ sh vu 1 sin vy sin vq 1‘Zl 
Mixed boundary value problems for a rectangle do not present any significant diff- 

iculties. Thus, when 

we obtain 
(2.5) 
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co 

2h-’ 
CL 

@-v)shvxsh$ exp w (6 sh a + v ch va)] sinvg sinvq 
rL -1 

It will be readily seen that the functions specified by formulas (2.1)-(2.5) satisfy 

all of Green’s functions properties. 

3. We conclude by presenting some of the results of constructing Green’s functions 

for mixed boundary value problems of the Lapla~e~ua~on for regions whose boundaries 
are defined by coordinate lines in a system of polar coordinates. Thus for the Ririchlet’s 

problem in the circular sector (0 < f < R, 0 Q 9 d a) Green’s function is of the form 

g(r,cp;r+W= 2n 

_i_ ln 1 P - to 1 I (my - (fq)” 1 
, z” - 5” ] 1 (R2zy - (r2t)” { 

z=r(cosq++iincp), r,=p(cos*-iisin~),a=n,/a 
The problem 

” IQ%“* = auiagi Iv_ = 0 

for sector (0 < cp < oc) yields 

(3.1) 

(3.2) 

which for a = n yields the expression for Green’s function of the mixed boundary 

value problem for the half-plane. 
In the case of an infinite ring sector (1” > R, 0 < 9 G a) with boundary condit- 

ions 

” lcpSO = ” lrp=z = avl arIr_n = 0 

we obtain the fo~owing representation for Green’s function 

(3.3) 

Green’s function of the Laplace operator for the infinite ring sector with boundary 

conditions 

is of the form 

Boundary conditions 

4,,;, = (8~ 1 ar + j3~)~=~ = 0 

for the infinite ring sector yield 
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- (r, 2’ - g cp; P, 9) =-&-In 1 f” 1 1 (R2z)’ (r2t)G 1 

J 2”--_‘1 j(R%)“-(r2~)(J) - 
(3.5) 

m 

2bRa-1 
c 

[R”“/vrYpY@R - Y)] sin ~‘p sin Y$, v = nna-1 
n=r 

In the case of the boundary value problem 

v &=a; cc = v IrzR1 = au / ar IrcRI = 0 

for the ring sector (a, < r < Rat 0 $ cp < a) we obtain Green’s function of the form 

g (r, cp; pt I#) = 2x 
_I_ ln  I z” - 5 c I I (R12z)” -- (r2S)’ I 

I z’ - 5’ I I (R12z)’ - (r*?J’ I ’ 
(3.6) 

O” 
a-l c (p2y _ By) (,3”_ Ry) 

7Z=l VrP (Rr + Ry) 
sin YT sin v$ 

Functions (3.1)-(3.6) satisfy all of conditions that determine Green’s function, 
The boundary value problems listed here for which Green’s functions and matrices 

can be derived by the described method do not exhaust its application field. These 
problems should be viewed as an illustration of the effectiveness of theproposedmethod. 
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